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A random medium is considered, composed of identifiable interactive sites or 
obstacles equilibrated at a high temperature and then quenched rapidly to form 
a rigid structure, statistically homogeneous on all but molecular length scales. 
The equilibrium statistical mechanics of a fluid contained inside this quenched 
medium is discussed. Various particle-particle and particle-obstacle correlation 
functions, which differ from the corresponding functions for a fully equilibrated 
binary mixture, are defined through an averaging process over the static 
ensemble of obstacle configurations and application of topological reduction 
techniques. The Ornstein-Zernike equations also differ from their equilibrium 
counterparts. 

KEY WORDS: Random media; correlation functions; graph theory; inhomo- 
geneous fluids; random fields. 

1. I N T R O D U C T I O N  

There  are m a n y  s i tua t ions  in which a fluid, ei ther  a l iquid or  a vapor ,  is 
i n t roduced  into  a r a n d o m  s t ructure  tha t  is s tat is t ical ly h o m o g e n e o u s  on all 
but  molecu la r  length scales. The  response  of the med ium to the presence of  
the fluid phase  can vary  subs tant ia l ly :  it m a y  dissolve into the fluid, it m a y  
swell or  con t rac t  cons iderab ly ,  or  there  m a y  be v i r tua l ly  no s t ruc tura l  
response.  In  this last  l imit,  the r igid s t ructure  can be rega rded  as a r a n d o m  

field of  obstacles  within which the fluid establ ishes itself in a state of  
t h e r m o d y n a m i c  equi l ibr ium.  

The  s ta t is t ical  mechanics  for fluids in ex terna l  fields is well es tabl ished,  

and  is often used to p roduce  re la t ionships  a m o n g  the d i s t r ibu t ion  funct ions 
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of a field-free fluid by introducing additional particles as external fields. (x-4) 
In the present application, however, the field acting on each fluid particle is 
defined by the local structure of the rigid obstacles and varies irregularly 
throughout the macroscopic sample. The formal development for particles 
in external fields leads to equations that combine the complexity of the 
fluid with that of the field. Even when the potential energy can be represen- 
ted by pairwise interactions of the fluid particles with one another and with 
specific "sites" in the medium, it is not immediately clear how the dis- 
tributions of fixed sites can be incorporated into the problem in a simple 
fashion. 

For a fluid in a rigid, random medium, the symmetry of the system 
and/or its Hamiltonian is clearly similar to that of a two-component 
mixture in complete thermodynamic equilibrium. Our goal is to exploit this 
similarity to cast the problem at hand in an analogous form. In the most 
general case, the obstacles can be characterized completely only in terms of 
a hierarchy of distribution functions. However, this immobile phase will 
often have been produced by a quench from some higher temperature at 
which a state of true thermodynamic equilibrium existed. If no major struc- 
tural relaxation of the immobile phase occurred during the quench, the 
resulting structure may be approximated by that at the higher temperature. 
This allows us to use conventional techniques of topological reduction to 
recast the problem into a mixturelike form. However, this quenched 
equilibrium limit must be embedded in a more general theory, which we 
will derive elsewhere via a different route. 

In contrast to the earlier work by Frisch (5) and Torquato and 
Stell, (61~ we focus attention on distribution functions that correspond to 
interaction sites on the molecules that make up the obstacles and the fluid. 
The "matrix functions" introduced by Frisch probe the shape of the volume 
occluded by a rigid, impenetrable boundary. Our analysis, based on 
familiar graph theory, does not require that there be so absolute a division 
between the rigid and mobile phases. The hierarchy of matrix functions is 
of great interest, in part because it also serves to describe the structure of 
media that are heterogeneous at much larger length scales. Torquato and 
Stell (6) were able to represent these functions as an unusual kind of 
graphical series. The rigidity of the matrix enters both graphical analyses in 
a similar way, and we believe that much of what we present here will prove 
useful in the Torquato-SteI1 approach as well. 

2. E Q U I L I B R I U M  IN A R I G I D  M E D I U M  

Consider a very large sample of the fixed medium (m), not necessarily 
at thermodynamic equilibrium, made up of immobile sites or "obstacles." 
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This system may be divided into a large number of macroscopic sub- 
samples (or "realizations"), each of volume V, which are in mutual thermal 
and mechanical equilibrium. In a particular realization there will be M 
obstacles located at positions {ql,q2 ..... q u } = q  M. The subset of all 
realizations containing precisely M obstacles in found with probability PM 
and, within that subset, the obstacles are distributed with probability 
density p(M)(q~). 

A fluid ( f )  of mobile "particles" is introduced into the medium and 
allowed to come to equilibrium with some specified activity zf and 
reciprocal temperature/7 = (kT) 1. At any instant, a typical realization of 
the medium will contain N particles located at rl, r2,..., rx. As the system 
evolves, the particles will be distributed according to a grand canonical 
ensemble. Because the obstacle field varies from one realization to another, 
each fluid sample will access a distinct equilibrium ensemble. For a 
specified realization, the conditional probability density for the mobile 
phase is 

p(rU I q M) = [Zf(qM)] -~ Z~ v exp[ --/~UNM(rU; qM)] (1) 

where UNM is the potential energy of the N particles in the presence of the 
M obstacles, and where ~f(qM) is the field-dependent grand partition 
function 

2z(q~) = 5, zf  f dru exp[ --flUuM(rU; q~)]  (2) 
N! 

For a specified obstacle realization (qM), the average of any 
mechanical variable X(rN; qM) is 

(X)f= E 1 f dr N X(rN; q~) p(rNi qU) 
N N. 

z~ [ drN X(rN;qU) expE__~UNM(rN;qM) ] ( 3 )  = [ m / ( q M ) ]  - 
N! J 

where ( . . . ) i  is used to indicate that the average is taken over the fluid 
ensemble only, so that the resulting quantity is a function of qM. Any such 
quantity y(qM) may be further averaged over the static ensemble of 
obstacles 

( y ) m = ~  f dqU y(q~) p(U)(qU) (4) 

where ( . . . )m indicates this second type of average. The Y(q~) need not be 
the partially averaged mechanical variables defined by Eq.(3). The 
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extensive nature of the "supersystem" used in the construction of the 
ensemble for the obstacles also allows the direct averaging of non- 
mechanical quantities such as entropy and free energy over the distribution 
of obstacles. 

To facilitate further analysis, we now identify the distribution of 
obstacles with an equilibrium distribution originally established at some 
different inverse temperature tim 

PMp(M)(q M) ---- [-"~m] 1 z M  exp[ --tim WM(qM)] ( 5 )  

where z m is the activity of the pure matrix sites prior to quenching, 
W/(q  M) is the potential energy of an obstacle configuration, and 2m is the 
grand canonical partition function for the prequench medium. Substitution 
of Eqs. (3) and (5) into Eq. (4) gives, for the average of any mechanical 
quantity X(rN; qU), 

< x >  [ Z m ] - I S ~ ]  M ~ , = ZmZ ) (M. N!) -1 
M N 

x f dqM [~f(qM)] - - 1  dr N X(rN; q i )  

• exp[--flUNM(rN; qM)_ tim WM(qM)] (6) 

When no subscript is attached to the angled brackets, they indicate that a 
mechanical quantity has been averaged first over the fluid ensemble and 
then over the ensemble of obstacle configurations. Equation (6) may be 
compared with the corresponding expression for a mixture in complete 
thermodynamic equilibrium and characterized by a single temperature fl 

(X} ~x=[Z] l ~ z i z T ( M ! N ! )  i 
M N 

f d q u  drN X(rN; qM) exp{ -- fl[ UNM(rN; qU) + Wu(qU)]  } X 

(7) 

The presence of two different temperatures in Eq. (5), while of quantitative 
significance, does not affect the mathematical structure of the integral 
and has no formal effect on any subsequent analysis. The irreconcilable 
difference between Eqs. (6) and (7) arises from the presence in the former 
of the partition function Zf(qM) within the integral over obstacle positions. 

If the interactions are pairwise additive, the expressions for the most 
important mechanical averages can be written in terms of the appropriate 
singlet and pair densities p(i)(rl) and p(2)(rl, r2). For both the medium 
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(frozen in a near-equilibrium configuration) and the fluid (in contact with a 
specific realization of the medium and in true equilibrium) these are given 
by the usual pure fluid expressions 

M 
flO~)(ql,..-, q n ) =  [Zrn]  - l  2 Zm 

M>~,~ (M-n)!  

x fdqn+l...dqMexp[--flmWM(qM)] (8) 

and 

/5}")(r~ ..... r . ;  qM)= [3f(qM)]--~ ~ (N--n)! 
N>~n 

x f drn+ 1' '" drN exp[ - - f l U N M ( r N ;  qM)]  (9) 

The caret that has been added to p}~) and that will be used on other fluid 
quantities emphasizes that these definitions apply to a specific realization 
(qM) of the matrix. 

The important theoretical and experimental quantities are the averages 
of the ~}")(rl ,..., rn; qM) over all configurations of the obstacles 

P M  
p}~)(rl , ,  r . ) :  M ~ -~" f dqM p(M)(qM)~(n)(r i . . . . .  r n  ; qM) (lO) 

To simplify the presentation, but without a significant loss of generality, we 
assume that both UNM and WM are pairwise additive 

N N M 
UNM(rN; qM) = ~ u(ri, rj) + ~ ~ v(r ,  qk) (11) 

i < j  i k 

and 

M 
WM(q M) = ~ w(qk, q,) (12) 

k<l  

where u, v, and w are the particle-particle, particle-obstacle, and obstacle- 
obstacle pair potentials, respectively. Upon exponentiation, the sums of 
potentials become products of exponentials, which may then be expressed 
in terms of the Mayer f-functions f,, = e -~u - 1, fv = e - ~  - 1, and fw = 
e -~mw- 1. The probability densities and partition functions can then be 
expanded, and the resulting integrals can be represented graphically in a 
form suitable for topological reduction. 
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The process of topological reduction has been well described (>3'1~'12) 
and will only be summarized here to make clear how the present analysis 
differs from that for an equilibrium mixture. An arbitrary external field 
(which vanishes under homogeneous bulk conditions) is usually introduced 
for convenience. In the case of a pure fluid, the integrals in the infinite 
series can be represented by graphs whose bonds are f-bonds, whose field 
points denote integrals over dri, and whose labeled root points represent a 
functional dependence on the variable indicated by the label. All points are 
weighted by a local activity z(ri), which includes in its definition the 
exponential of any singlet external potentials. Symmetry numbers are 
included in the definition of the graphs to account for multiple occurrences 
of identical terms. The reciprocal of the partition function remains as a 
prefactor for the entire graphical series of the distribution functionsJ 1] 

The graphs contributing to the distribution functions are not 
necessarily connected, and in such cases represent factorable integrals. The 
disconnected fragments containing no root points are recognized as graphs 
in the expansion of the partition function. Their sum, which can be factored 
out of all unique rooted structures, cancels the factor Z-1. The graphical 
representations of the distribution functions become sums of graphs having 
at least one path of bonds connecting each field point to at least one root. 
Of course, this graphical representation is reached more quickly by 
successive functional differentiation of the graphical series for In ~ with 
respect to the generalized activities. (2) The present case, however, lacks a 
joint partition function to represent implicitly the entire structure of the 
fluid-obstacle system. 

For the analysis that follows it is necessary to make careful dis- 
tinctions among the various activities and number densities that charac- 
terize the fluid. By construction, there is a single activity z s identical for all 
realization-dependent fluid ensembles. If an arbitrary external field ~(r~) 
were applied identically to each realization of the obstacles, the local 
activity would be defined by zf*(ri)= zfexp[-flqJ(ri)].  This is the field that 
is allowed to vanish under homogeneous bulk conditions. In the present 
application there is an additional permanent external field, representing the 
interactions of the fluid with the obstacles, 

(13) 

which leads to a realization-dependent local activity ~ff(ri;qM)= 
z?(ri) ~b(ri; qM). 

In the presence of both the obstacle field and any other arbitrary field 
~p, an important quantity is the singlet density ~}l)(ri; qM), given by Eq. (9) 
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with n = 1. Averaging fi}.l)(r~; qM) over the system volume V yields the 
mean fluid density within that realization, 

~f(qM) = V-I f dr i/~},/(ri; qM) (14) 

In general, each realization will have a different mean fluid density at 
equilibrium. The global mean fluid density, averaged over the ensemble of 
obstacle configurations, is 

pf= V ~ drzp~.1)(ri)= (~s(qM))M (15) 

One of our goals is to obtain graphical expressions that eliminate the 
various activities in favor of the averaged quantities p}11(ri), P~)(qi), Pf, 
and Pro" 

In the activity expansions of ~}~(rl;q M) and ~}~)(rl, r2;qM), all the 
graphs are connected; they contain articulation circles, and the points 
represent the activity ~j*(ri; qM). Let F(r~;qM), an arbitrary graph (or its 
associated function) appearing in the expansion of t~} 1~, be inserted into 
Eq. (10). Both exp[-flW(qM)] and q~(ri; qM) can be expanded infv andfw 
functions, and the integration over qM performed. From the single graph 
F(rl ; qM), an infinite series of integrals is generated, which can be represen- 
ted by graphs with varying numbers offu, fv, and fw bonds connecting the 
points of the original graph to any number of obstacle field points, each 
associated with an activity z*(q~). The field points are now associated with 
the mean local activity zT(ri). The structure of the obstacles is represented 
implicitly by the presence of fw bonds and the attendant large increase in 
the number of graphs. Many of the topologically distinct graphs 
representing terms in this series are now disconnected, but all disconnected 
fragments are made up entirely of obstacle field points and fw bonds. The 
set of topologically unique graphs arising from a particular graph F(r~; qM) 
is completely disjoint from that arising from any other distinguishable 
graph F'(r l ;  qM). 

By analogy with the description of the general procedure, the integrals 
are expressed as products, and the corresponding graphs are separated into 
a singly rooted fragment and unrooted, disconnected subgraphs. The sum 
of all graphs with the same core is equal to the product of the rooted 
fragment times the partition function -=,,. This cancels the reciprocal of the 
partition function, which normalizes the distribution of obstacles. The 
resulting series is the sum of all such connected graphs, similar to (but 
smaller than) the set that would be obtained for a true equilibrium mixture. 
To identify the missing graphs, we define an articulation set as a set of 
points whose removal would disconnect a graph into two or more 
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fragments, at least one of which contains only field points. An obstacle 
articulation set is one made up entirely of obstacle points, and a shielding 
set is an obstacle articulation set whose removal produces unrooted, dis- 
joint fragments containing at least one fluid field point. All graphs with 
shielding sets are absent from the expression for the distribution functions 
of the fluid in the averaged medium. This is physically appealing because, 
by postulate, the matrix is rigid and the obstacles do not respond to the 
forces generated by the mobile particles. While individual graphs should 
not be given a physical interpretation that is too literal, the sets do 
represent the interactions of particles on one "side" with those on the other 
"side" of the set through the redistribution of the obstacles themselves. It is 
thus reasonable that such graphs be excluded. 

It is interesting to consider how those particular graphs, present in a 
true equilibrium mixture, came to be absent here. In both the equilibrium 
mixture and the problem at hand, expansion of the potential energies into 
products of f-bonds generates an identical number of terms prior to any 
integrations. In the true equilibrium mixture there is a unique distribution 
function that normalizes each of the singlet and mixed pair distribution 
functions. The cancellation of disconnected graphs occurs only after all 
integrations over the positions of both components are performed. The 
conditional probability formulation of the present problem leads to two 
distinct probability distributions. Whether or not the obstacle probability 
function is of the equilibrium form assumed here, there is a unique fluid par- 
tition function Zf(q M) for each obstacle configuration. There is therefore 
always a complete removal of disconnected graphs in the fluid distribution 
functions, which is separate for each realization of the fixed matrix. Thus, 
those integrands that would have been connected upon integration over the 
second component are removed in the cancellation of Sf(qM). 

This process is illustrated in Fig. 1, where squares and circles are used 
to indicate obstacle and fluid points, respectively. The graph on the left 
represents a partially integrated term contributing to a singlet distribution 
function. In the equilibrium mixture, the completion of the remaining 
integrations leads to the graph at the top. In the random medium problem, 
however, the top part of the graph, shown in brackets, is merely one con- 
tribution to one of the disconnected graphs. The parent graph is shown, 
with asterisks used to indicate field points in the full M-obstacle external 
potential. This rootless portion of the parent graph contributes to the can- 
cellation of SF(qM), and only the connected residual, free of shielding pairs, 
survives in the final formulation of the graphical series, given below: 

p}l)(rl) = sum of all topologically distinct, simple, connected graphs with 
one fluid root point (representing the factor z~), some or no fluid 



Fluids in Random Med ia  545 

field points (representing the factor zf), some or no obstacle field 
points (representing the factor z*), some or no fu bonds between 
pairs of fluid points, some or no fv bonds between mixed pairs of 
points, and some or no fw bonds between pairs of obstacle points, 
such that the graphs have no shielding sets 

(16) 

Exactly the same kind of analysis can be carried out for p}.~)(r~ ..... r,), 
except that the graphical series contains n fluid root points. (When a single 
subscript is used for a higher order function, all root points are of the same 
species.) The graphical expressions for the pair and higher distribution 
functions can be further simplified. For this purpose it is useful to define 
general n-body correlation functions g(n~ as the ratio of the p(n) to their 
ideal-gas limits, 

,~(n) i v  Xn ) 
or(n) (v  X n ) ~  k'cq"',v~'~l~"'~ 
6ct,...,v~ 1 ,..., p~I~(x,).., p~i~(xn) (17) 

~1 \Random 
[ - - - -  ]  anoe,,o  

Fig. 1. Graphical expansions of the singlet distribution function for an equilibrium binary 
mixture and for a fluid in a quenched medium. The circles and squares rpresent fluid and 
obstacle particles, respectively. The resulting diagrams in the random medium case are free of 
shielding sets. The graph formed by the two disconnected fluid particles is cancelled by the 
partition function ,.Ef(qM). 
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The subscripts indicate the species involved (m or f ) ,  and x denotes q or r, 
as appropriate. 

In any graph contributing to the p}n), there is a minimal set of 
articulation points (including the roots themselves), one of which lies on 
every path from one of the remaining articulation points to any root. When 
this minimal set is removed, the unrooted fragments result in residuals that 
are elements of the graphical expansion of one of the singlet densities. The 
obstacle articulation points, upon removal, produce disconnected, 
unrooted fragments with only obstacle points. (Otherwise, they would be 
shielding 1-sets.) Those disconnected fragments are members of the 
graphical series for p~)(r), which has the usual topological specification for 
a pure fluid. The topological reduction can then be carried out to remove 
residuals articulated at obstacle points by replacing them with p~)(r) 
points. The fragments eliminated at fluid articulation points are all 
graphical elements of the series described in Eq. (16). Appropriate reduc- 
tion at these points replaces the fragments by p}~)(r) field points, so that 
only graphs without articulation points remain. The definition of the g}") 
gives a graphical series which has unit weighting at the roots and is (at this 
level of specification) otherwise identical to that for p}n). Both are identical 
to those that would arise in an equilibrium mixture, except that graphs 
with shielding sets are absent here. 

The structure of the fluid in the neighborhood of an obstacle is also of 
interest. At lowest order, this structure is represented by the mixed pair 
density functions, related by symmetry. 

p}~)(rl, q , ) = p ~ ( q a ,  r~) (18) 

For a specific realization of the matrix, setting n = 1 in Eq. (9) gives the 
singlet density r ; qM). For a quenched distribution of M obstacles, the 
probability density that there is a fluid particle at position rl conditional 
on the presence of any obstacle at ql is 

fi(1) rl M! exp[- t im WM(qM)] r ; qM) 
/I,~( [q l )=(MZ1)! f  dq~' 'dqM Zm 

(19) 

where Zm = S dq M exp[-f lm WM(qM)] is the configurational integral for a 
canonical ensemble of M obstacles in a volume V at a reciprocal tem- 
perature tim- In a quenched grand canonical ensemble of obstacles, the 
probability of finding M indistinguishable obstacles in this volume is 
zMzM/( M[ "~m), and the sum over all M gives the mixed pair density 
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(2) _ (1) 
) - -  P)~lm(rl  q l )  P)7. ( r l ,  q ]  

z ~ Z M  1 
= ~' 1 2 - - ~ (  ) rr Iql) --m M! Vflm~ 1 

M 

M 

----m (&/----1)! (N-- l ) !  dqz.. .dqM 
M 

• [~/(qM)]- i  f d r2 . . .d ru  

• exp[ --flUNM(rN; qM) __ J~m WM(qM)] (20) 

The expansion of Eq. (20) in f-functions generates the initial graphical 
series for ,~(2) and ,~(2) which is suitable for the topological reductions out- V f m  I J m f  , 

lined earlier. The analysis applied to p}~) also applies to these functions: the 
contributing graphs are the subset of those in the equilibrium mixture 
without shielding sets. The two-body total correlation functions 
h~(xl, x2) = g~,~(Xl, x 2 ) -  1 eliminate the single disconnected graph in g~, 
and lead to 

h~.l(x 1, x2)=sum of all topologically distinct, simple, connected graphs 
with one unity-weighted fluid root point of species ~, one 
unity-weighted fluid root point of species 7, some or no fluid 
field points representing the function p}l)(r), some or no 
obstacle field points representing the function p~)(r), some or 
no fu bonds between pairs of fluid points, some or no fv bonds 
between mixed pairs of points, and some or no fw bonds 
between pairs of  obstacle points, such that the diagrams have 
no articulation points and no shielding sets 

(21) 

The conditions listed in Eq. (21) (except for the italicized language) will 
prove common to several additional topological specifications to be made 
below and, for conciseness, will be designated the basic specifications. Note 
that the restriction on shielding sets eliminates all fluid points and bonds 
from hmm and correctly reduces this correlation function to that of a pure 
substance. 

As noted above, we imagine the existence of many macroscopic 
replicas of the system, each of volume V and having a different, but fixed, 
distribution of obstacles. Under such an assumption, the Helmholtz free 
energy of the fluid is the average over the ensemble of obstacle realizations, 
and is expressed by Eq. (4) with y(qM)= A(qM), so that AS= (Af(qM))M. 
Because the entire free energy cannot be written as a sum of graphs in the 
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f -z  representation, (11) the usual analysis (~'2) proceeds through the singlet 
density. The configurational chemical potential is given by 

( : ( o(As,,/v,i ) 
-fll~f= -fl  \ ~N, J,,v, \ O(N,/Vt) J,, 

_ ~ (O(AT/V)~ = In 0 !  
t, ep: )~,v z: (22) 

where Ai, t, V,, and Nt are the total free energy, volume, and number of 
particles of the fluid in the entire ensemble of replicas of obstacles. The 
usual derivation of the free energy requires a term-by-term comparison of 
the density expansions of p~J)(rl)/z~(rl) and of O(Af/V)/~pf. The density 
expansion of p}l)(rl)/z~(rl) can be obtained in the same form as that for 
p0~)(rl, r2) , with the minimal set of articulation field points also replaced 
with density field points. The analysis carries through in a straightforward 
fashion, and the result for the mean configurational Helmholtz free energy 
is 

-/~A F = sum of all topologically distinct, connected graphs consisting of 
one or more fluid p}l) field points, some or no obstacle p~) field 
points, some or no f ,  bonds between pairs of fluid points, some or 
no f~ bonds between mixed pairs of points, and some or no fw 
bonds between pairs of obstacle points, such that the diagrams 
contain at least two points and are free of articulation field points 
and of shielding sets (23) 

The sum of all graphs with no obstacle points is just the configurational 
free energy of the pure fluid in the absence of the obstacle field. Subtracting 
this quantity yields the configurational "free energy of absorption" of the 
fluid into the matrix 

- /7 AAab s = sum of all graphs in Eq. (23) with at least one obstacle point 

(24) 

This quantity differs from the conformational contribution to the constant- 
volume free energy of mixing of an equilibrium mixture in that is does not 
include graphs with shielding sets. 

Other thermodynamic quantities, such as the internal energy and the 
presssure, may be expressed as mechanical averages given by Eq. (8). In 
many instances, the mechanical quantity is a sum of pair contributions 

X(rN; qM) = Z Xmm(qi' qJ) + ~ ~ [Xmf(qi, r i) + xf,,(ri, qj)3 
i < j  i j 

+ ~, xff(r~, rj) (25) 
i < j  



Fluids in Random Media 549 

It is easy to show that for such a quantity, Eq. (8) leads to the usual 
mixture expression 

if (X )  =~ dq~ dq2 Xmm(q~, qj) P(m2)m(qi, qj) 

if '~(2)[r , + 2 dqj drl [xmy(ql, r~) p~](q~, rl) + xfm(r~, q~) Vfm' 1 q~)] 

1; 
+ ~ dr1 dr2 x f f ( r  1, r2) p0)(rl, r2) (26) 

The differences between Eqs. (8) and (9) are thus carried entirely by the 
distribution functions. In some cases, the m m contribution may be absent 
from Eqs. (25) and (26). 

3. O R N S T E I N - Z E R N I K E  E Q U A T I O N S  

Term-by-term evaluation of the diagrams in Eq. (21) is useful only at 
low densities of both particles and obstacles. In order to develop 
approximations accurate at higher densities, it is helpful to have an implicit 
set of equations for the pair correlation functions. In equilibrium mixtures, 
the Ornstein-Zernike equations have proven a fruitful starting point for the 
generation of such approximations. (2'~3) However, the form of these 
equations is such that they automatically generate diagrams with shielding 
sets. To establish, suitable Ornstein-Zernike equations for the two-phase 
random medium, we identify diagrams containing nodal points, i.e., those 
points that lie on all paths connecting the roots. It is useful to define a 
direct correlation function %(x~, x2) as 

c~(xl, x2) = sum of all graphs in Eq. (21) with no nodal points (27) 

The structure between nodes or between roots and nodes of the h~(xl, x2) 
in Eq. (21) is thus always that of one of the graphs contributing to one of 
the %(Xl, x2). Thus, h~(Xl, x2) can be represented as an infinite sum of 
distinct graphs that are chains of various c-bonds. This sum is given 
explicitly as a sum of successive convolutions of the c~(xl, x2) with one 
another. 

In an equilibrium mixture, each of the h~(xl, x2) is the sum of all 
possible distinct chains of c-bonds that begin at an e-root and end at a 
7-root. In the random medium, only those chains with no shielding nodes 
are present. In order to prevent any two obstacle nodes from forming 
shielding pairs, the graphs contributing to hjy(r~, r2) must have one unin- 
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terrupted sequence of some or no fluid nodes, followed by one uninterrup- 
ted sequence of some or no obstacle nodes, followed by a final, uninterrup- 
ted sequence of some or no fluid nodes. Multiple sequences of obstacle 
nodes are forbidden. If any obstacle nodes are present, one of the graphs 
from Cfm(rl, ql) must occur at the beginning of the series of convolutions 
over obstacle points, followed by one of the graphs from CmF(ql, rl)  at the 
end of the sequence. Between these may be any number of convolutions 
over graphs from Cmm(I]l, q2) and, on either side, any number of con- 
volutions over diagrams from co(r1, r2). The general structure of these 
graphs is shown in Fig. 2. The sums over all sequences of chains of c-bonds 
of the same species are denoted by Cmm(ql, q2) and C/f(rl, r2), and may be 
readily evaluated in Fourier space (1'2"12) if both Cmm(ql, q2) and c/s(rl, r2) 
are known. In fact, Cram(q1, q2) is just hmm(ql, q2). 

The average pair distribution function for the fluid can be shown to be 
given by 

hff(rl, r2) = Cff(r l ,  r2) + f dr3 dr4 pf(1)(r3) p•l)(r4) Hf f ( r l ,  r3) 

• [ ;dq3 ~" dq4 Pm (q3) P2)(q4) 

Cfm(r3, q3) Hmm(q3, q4) cmf(q4, r4 ) ]  Hff(r4, r2) (28) x 

where Hyy and H~m are hypervertex functions defined by 

p~)(xi) p~')(xj) n=(xi, xj) 

= p~(xi) 6(x,-  x~) + p~l~(x,) p~'~(xj) C=(x,, xj) 

where ~ =  (m, f )  and 6(x) is a three-dimensional Dirac delta function. 
While Cmm(qi~ qj) is entirely determined by the structure of the medium, 

c f f  Cfm Cmm Cmf c f f  
h f f  = 0 " 0  - -  - O ' - - a l - - B - - - ~  - - - B ' - - ' B - - I I ~ O  . . . .  

h f ro  = 

h m f  = 

Fig. 2. General structure of the graphs in the total correlation functions hfy(rl,r2) , 
hj~,(rl, ql), and h,,f(ql, rl). The circles and squares denote fluid and obstacle nodes, respec- 
tively. The bonds denote direct correlation functions, as indicated. Only one sequence of 
obstacle nodes is allowed, in order to avoid the occurrence of shielding sets. 
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the functions Cfm(ri, qi), Cmf(qi, ri), Cff(ri, rj), and hjy(ri, U) are related only 
by the single equation (28). 

Additional implicit equations may be obtained by examining the nodal 
structure of the mixed total correlation functions him(r l, q l) and hmf(ql, r 1). 
In order to prevent the obstacle particle at ql and any obstacle node from 
becoming a shielding pair, the graphs contributing to hrm(rl, q~) must have 
one uninterrupted sequence of some or no fluid nodes followed by only one 
uninterrupted sequence of some or no obstacle nodes. If obstacle nodes are 
present, they may arise from any number of convolutions over diagrams 
from cg~-(rl, r2), followed by one of the diagrams from cj},(r~, ql) and by 
any number of convolutions over diagrams from Cram(q1, q2)" The nodal 
structure of hmf(q~, rl) is exactly the reverse, with diagrams from Cmf(qi, ri) 
providing the transition between sequences of like nodes. In terms of the 
hypervertex functions defined above, hjm(rl,q~) and h~y(ql, rl) can be 
expressed as 

h/m(rl, q~)= f dq2 dr2 p.}l)(r2)P~)(q2) Hs-(r~, r2) 

x Cfm(r2, q2) Hmm(q2, ql) (29) 

and 

hmf(ql, rl) = f dq2 dr2 P~)(q2) P~l)(r2) Hmm(ql, q2) 

x Cmf(q2, r2) H~-(r2, rl) (30) 

Equations (28)-(30) are actually the Ornstein-Zernike equations for the 
random medium. More conventionally, they may be written as 

hmm(q~, q2) = Cmm(ql, q2) + f dq3 Cram(q1, q3) p(ml)(q3) hmm(q3, q2) (31) 

hmf(ql, r,) = Cmf(ql, rt) + f dq3 Cmm(ql, q3) P~)(q3) hmf(q3, rl) 

-}- f dr3 Cmf(ql, r3) p}l)(r3) Cff(r3, rl) (32) 

hfm(rL, ql) = Cfm(rl, ql) + f dq3 Cfm(rl, q3) P~)(q3) hmm(q3, ql) 

+ f dr3 cff(rl, r3) P}l)hjm(r3, ql) (33) 
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hrf(rl, r2) = cjy(rl, r2) + f dq3 cfm(rl, q3) P~)(q3) hmf(q3, r2) 

+ f dr3 cff(rl, r3) p~l)(r3) h~-(r3, rl) (34) 

Iterative substitution among these equations shows that they generate the 
restricted nodal structures for hff, hmf, and him deduced above. 

Equations (31)-(34) differ from those for a true equilibrium mixture in 
two crucial ways. First, there is no convolution over a fluid field point in 
the equation for hmm. This should be expected, since Eq. (31) is the true 
Ornstein Zernike equation for the obstacle sites alone. It is necessary that 
this term be absent in order to prevent the introduction of shielding 
sequences in the other h~7. A more subtle difference is the presence of Cs in 
the second convolution of Eq. (32), which replaces the function hff in the 
usual mixture expression. Its introduction prevents the occurrence of 
shielding pairs of nodal points in all subsequent equations and preserves 
the symmetry between Eqs. (32) and (33). 

It is easy to show that the usual mixture versions of the hypernetted- 
chain approximation, the Percus-Yevick approximation, and the mean 
spherical approximation introduce no shielding sets into the direct 
correlation functions and are therefore readily applied to Eqs. (32)-(34). In 
generating new or more elaborate approximations, care must be taken to 
prevent the introduction of shielding sets. These are properly present in an 
equilibrium mixture, and Percus' functional expansion method (4) for 
producing higher order versions of these approximations for an equilibrium 
mixture will eventually generate such improper graphs. Since there is no 
single partition function for the problem of a fluid in a quenched random 
medium, the analogous starting point for the Percus analysis is not obvious 
in this case. 

4. F U R T H E R  T O P O L O G I C A L  R E D U C T I O N S  

The graphical expressions given above for the structure and thermo- 
dynamic properties contain the obstacle-obstacle potential explicitly. This 
potential might not be known, but the pair structure of the obstacles will 
nearly always be accessible via diffraction methods. Using ideas first 
introduced by Abe (14) and fully developed by Stell, (3'14) it is possible to 
identify articulation pairs of obstacle points within the graphs for the 
obstacle distribution functions. The removal of these pairs gives rise to a 
residual belonging to the graphical series for hmm. The topological reduc- 
tion for hmf, hfm, and hyf is straightforward and yields 
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h~7(x1, X2)= sum of all graphs consistent with the basic specifications of 
Eq. (21), some or no hmm bonds connecting pairs of obstacle 
points, such that there are no articulation pairs of obstacle 
points 

(35) 

For spherical obstacles, hmm is completely determined by the structure 
factor of the obstacles. The direct correlation functions c~(x~, x2) are given 
by the sums of all diagrams in (35) with no nodal points. 

A further reduction of Eq. (35) may be made by considering the 
"islands" of obstacle points present in some of the graphs. An island is a set 
of obstacle points mutually connected via obstacle-obstacle bonds. Islands 
are separated if every path between them contains at least one fluid point. 
Consider a subset of an island, consisting of either root points or of points 
directly connected to a fluid point. These n points from an articulation set 
whose removal disconnects a residual belonging to h~)(q") [i.e., to the sum 
of connected graphs contributing to the n-obstacle distribution function 
g~)(q~)]. The ~n) n h m (q)  may be represented as generalized "bonds" which 
simultaneously connect n points in a graph and can be used as elements in 
a further topological reduction, 

h~.~(xl, x2)= sum of all graphs consistent with the basic specifications of 
Eq. (21), with some or no separated h~) bonds connecting sets 
of obstacle points that are themselves either root points or are 
directly connected to at least one fluid point by an f~ bond 
(i.e., there are no articulation obstacle sets of any order) 

(36) 

Note that the h~) functions are represented by graphical series that contain 
nodal points. When introduced into Eq. (36), they obscure the nodal struc- 
ture of the parent series and preclude any expression of the % in terms of a 
graphical series with h ~  bonds as the only obstacle contributions. 
However, the full nodal structure of the h,~ can be revealed by expanding 
the h~ ) functions in terms of c~ ) functions (s~< n), via exhaustive iterative 
substitution of the nth- and lower-order Ornstein-Zernike equations for 
the medium into one another. This produces a graphical series whose 
connective elements include only cm bonds of various orders. For the pair 
function hmm , this is the usual chain sum of Cram bonds. For higher order 
functions, the graphs have branched structures which involve the various 
pure-obstacle direct correlation functions. Stell (14) has shown that the 
diagrammatic series for h~ ) in terms of c~ ) bonds requires that two c,, 
bonds have at most a single point in common and that at least two c,, 
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bonds intersect at every field point. We will refer to such structures as 
"OZ-consistent." The resulting expression for c~ is then 

c~(xl,  x2)--sum of all graphs consistent with the basic specifications of 
Eq. (21), with some or no c~ I bonds connecting the obstacle 
points within each separate island in an OZ-consistent 
fashion, such that there are no nodal points 

(37) 

Finally we note that, if completely rooted, the set of all obstacle 
islands in Eq. (36) represents graphs that are products of h~ ) functions of 
various orders and contribute to the expression for g~) in terms of h~ ) 
functions (s >~ n). However, not all the required graphs are present, because 
we have eliminated the articulation circles at fluid points. These structures 
arise inevitably when the function g~) is expanded in h~ ) functions (p ~ s). 
Returning to the original z-f representation for ,~(2) we can once again V~ 7 , 

partition the obstacle points in any one graph into a set that are either root 
points or directly connected to a fluid point, and a second set that are 
connected only to other obstacle points. The former subset is used as a 
reducible set, which leads to a graphical series containing p~) functions. 
These may be replaced with singlet densities and g~) functions. The analysis 
proceeds just as readily for mixed distribution functions of any order, 
defined by arguments similar to those that lead to Eq. (20). This produces 
the topological expression 

(n) x n  p ....... ( ) = sum of all topologically distinct, simple graphs with root points 
of the species cq..., v (=m,  f )  representing the functions z~(r) 
for fluid roots and p~)(q) for obstacle roots, at least one fluid 
root, some or no fluid field points representing z~(r), precisely s 
obstacle field points (s~> 0) representing p~)(q) and connected 
by a single multiobstacle bond representing the function g~)(qS), 
some or no fu bonds connecting fluid points, such that every 
obstacle point is either a root or is directly connected to at least 
one fluid point by an f~ bond, and such that the graphs have no 
shielding sets 

(38) 

In order to obtain the preceding representations using standard 
techniques of topological reduction, it was assumed that the distribution of 
obstacles was one of quenched equilibrium. However, the expressions 
appropriate to that particular situation are necessarily embedded in a more 
general analysis in which the obstacle distribution is decomposed using 
probability theory alone. The equilibrium expressions relating the various 
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g~), h(,~), and c~ ) do not contain the intermolecular potential, and may be 
taken as defining equations, applicable even when the structure of the rigid 
obstacles is far from equilibrium. It is intuitively clear that the most general 
expression of this problem will involve obstacle distributions of all orders. 
One is therefore led to suspect that the above expressions involving these 
higher order functions are indeed general statements for the structure of a 
mobile phase in equilibrium within a rigid structure of obstacles. In fact, we 
show elsewhere that an analysis similar to that of Torquato and Stell (6) will 
generate Eq. (38) directly, without any assumption about the origins of the 
obstacle distribution. Indeed, that analysis does not require that the 
obstacle distribution be homogeneous on any length scale. Voids much 
larger than the obstacles themselves can be accommodated by including 
distribution functions of appropriately high order. However, the formalism 
will probably not prove useful unless fluctuations contributing to the 
obstacle distribution are not too different from those observed in typical 
equilibrium fluids. 

5. IDEAL GAS IN A R A N D O M  M E D I U M  

In their analysis of the matrix functions S(n)(rn), Torquato and Stell (6) 
obtain without recourse to equilibrium statistical mechanics--a Mayer-  
Montroll expression which is a special case of Eq. (38). Their model 
requires that the matrix be made up of obstacles impenetrable to the fluid 
particles (though possibly penetrable to each other), so that there is no 
ambiguity about the partitioning of the volume into rigid and fluid 
domains. They note (7) that there is a one-to-one isomorphism between their 
analysis for the S(~(r n) functions, the probability that n points in a given 
configuration do not fall within any of the obstacles, and the distribution 
functions for an ideal gas confined to that same space. This is so because 
the Torquato-Stell probe functions do not involve any interaction among 
the probe points. These probe functions m(r) equal unity under exactly the 
same circumstances for which f v = - 1 .  The explicit Mayer-Montroll  
expression given by Torquato and Stell generates, for the quantity 
S(n)(rn)/[LS(l)(ri)= g}~)(r"), the same graphical series given by Eq. (38) 
with c~ = ~b . . . . .  v = f ,  no fluid field points, no f ,  bonds, and all f~ bonds 
representing a simple hard-core exclusion. 

An alternative graphical series for the S(')(r ~) is generated from 
Eq. (35), 

S<n)(q n) = sum of all topologically distinct, simple graphs with n "probe" 
root points at positions r~,..., rn, representing the function 
S~l)(ri), some or no obstacle field points representing p~)(q), 
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some or no separated h~ ) bonds connecting a set of obstacle 
points, such that every obstacle point is directly connected to at 
least one root point by an m bond, and such that the graphs 
have no articulation points (39) 

This formulation differs from that arising from the Mayer-Montroll 
equations of Torquato and Stell/7) The latter series contains roots of unit 
weight and disconnected graphs with articulation points at the roots. The 
only disconnected graph in Eq. (39) is the one with two roots and no 
bonds. The function S(1)(ri) always reduces to the volume fraction of the 
matrix (the space not occupied by the obstacles). With the contribution of 
S(1)(ri) made explicit, the series in Eq. (39) may sometimes prove to be 
easier to manipulate than the original series. 

In an approach similar to the one taken here, Torquato and Stell were 
also able to obtain equivalent expressions for the S~n)(r ~) via the 
equilibrium hierarchy of Kirkwood and Salzburg. They noted that, when 
the particles of the mobile phase interact with one another, the Kirkwood- 
Salzburg hierarchy provides well-defined expressions for g(n)(r") in the 
two-phase random medium. However, they question how to avoid 
generating the equilibrium-mixture distribution when the Kirkwood- 
Salzburg equations for the mixed distributions are considered. From our 
analysis, it is clear that such coupled, implicit equations must exclude 
graphs with shielding sets. Because of the highly connected structure of the 
Kirkwood-Salzburg hierarchy (i.e., because every field point is connected 
to one root in each term of the equations), this seems not to be a serious 
problem. If the obstacle distribution functions are fixed a priori, then, upon 
selective iterative substitution to remove higher order fluid functions in 
favor of fu and f~ functions, appropriately modified Kirkwood-Slazburg 
equations will not generate graphs with shielding sets. 

The Torquato-Stell (Mayer-Montroll) equations for the case fu=O 
are (7) 

] t g}")(r") = ~ dqSp}~ [ 1-~-fv(ri, q j ) ] - 1  (40) 
s = 0  " =  

where the definitions p(O) = 0 and g(O) = 0 have been used. The average pair 
correlation function is 

gff(rl, r2)= 1 + p2 ) f dq, [L(r , ,  qa) +f~(r2, q~) +f~(r,, ql )fv(r2, ql ) 

Ep~)] 2 
+ Z---f--. f dq~ dq2 [f~(rl, ql) +f~(r2, q~) +f~(r,, ql) f~(r2, q~) 

x [f~(rl, q2) +f~(r2, q2) +f~(rl, q2) f~(r2, q2)] 

• gmm(ql, q2) + O(p3m) (41) 
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Torquato <16) has discussed a more general class of correlations of which 
these are a particular case. The functions SI2>(r) and g//(r) have been com- 
puted for a few model media. The calculations are analytic and exact for 
the case when the matrix consists of randomly placed (i.e., fully penetrable) 
spheres. This is the random-medium analog of the Widom-Rowlinson 
penetrable sphere model <iv) for equilibrium mixtures. It may also be regar- 
ded as the equilibrium problem corresponding to the Lorentz model of 
kinetic theory, <18'19) with randomly placed scatterers. If a denotes the 
diameter of the uniformly distributed obstacles, <2~ 

F 1 3 r 1 //r'~37) 
g~.(r)=exp{~pa3 L --~a+-~-d~a) j~, r<2a (42) 

= 1, r > 2 a  

Torquato and Stell <m) have also considered a medium with the structure 
corresponding to impenetrable spheres. They showed that, for impenetrable 
obstacles following any distribution, the Mayer-Montroll series (40) is self- 
truncating, and that the expression for gjy(r) involves only two field points. 
For obstacles distributed as equilibrium hard spheres, they calculated g/y(r) 
analytically to second order in the density of the obstacles, and made 
numerical calculations using the full expression for the obstacle structure. 

Several well-established statistical mechanical tools exist for dealing 
with inhomogeneous fluids. The formalism presented here provides a much 
needed generalization to the case where the external field responsible for 
the inhomogeneities is random due to the presence of a disordered array of 
obstacles. In most cases, the field is statistically homogeneous and isotropic 
at length scales larger than the dimensions of those obstacles. Such 
situations occur in a variety of physical problems involving fluids in 
quenched, disordered matrices. Prominent examples include hydrogen 
solubility in amorphous metals and alloys, the partitioning and phase 
behavior of fluids in microporous glasses, <211 and gas solubility in glassy 
polymers and polymeric membranes. The molecular foundation of impor- 
tant equilibrium processes for the separation of compact macromolecules 
and colloidal solutes, such as gel permeation chromatography, is directly 
related to the calculation of the free energy of "absorption" discussed 
above. 

The formalism also lends itself to a series of natural extensions. One of 
them, which we will discuss in future work, is the study of the percolation 
of fluid molecules through a quenched, random medium, i.e., of 
localization~lelocalization phenomena. A second, more important one is 
the microscopic study of molecular fluids (22) and especially of polymeric 
liquids <23) constrained within random media, through an application of the 
site site integral equation treatment due to Chandler and co-workers. 
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